Energy of a particle as a closed wave structure and the law of conservation of energy

Energy of a particle as a closed wave structure and the law of conservation of energy

(zenodo.org) Introduction Modern physics considers elementary particles as objects possessing both corpuscular and wave properties. In relativistic mechanics the energy of a particle is defined by the expression: This formula shows that the energy of the particle grows with increasing momentum. However, if the particle is a closed wave structure of an electromagnetic wave and a standing wave in space created by the propagation of the electromagnetic wave, then its energy must be conserved within the system. This leads to an important question: how does a change in velocity affect the internal structure of the wave? De Broglie wavelength and energy redistribution According to de Broglie's hypothesis, a moving particle possesses an associated wave with length: where is Planck's constant, a is momentum. An increase in velocity leads to an increase in momentum, and hence to a reduction in wavelength. This means that when a particle accelerates, its wave structure shrinks, changing the distribution of energy within the system itself. Particle as a closed object If a particle...
Read More