Wave resonance and scaling. Speed of light as a boundary of physical interactions.

Wave resonance and scaling. Speed of light as a boundary of physical interactions.

(zenodo.org) Introduction Modern physics operates with a number of fundamental constants, among which Planck's constant h occupies a special place. However, if we consider the process of scaling physical quantities through resonant waves, we can assume that Planck's constant is not an independent quantity, but is derived from the speed of light and geometrical characteristics of wave processes. Linking wave processes and scaling Many physical phenomena are based on resonance. If we consider standing waves at different scales, we can identify their common patterns. One of the key factors is that when scaling the wavelength, the number of nodes is preserved, while the frequency changes inversely proportional to the scale. The speed of light plays here the role of a fundamental parameter determining the interaction of waves. It is important to note that the interaction velocity remains constant, but it can be decomposed into two components: along the x-axis (spatial scale that defines the size); along the y-axis (energy-related oscillation frequency). This leads to a fundamental relationship between...
Read More
Energy of a particle as a closed wave structure and the law of conservation of energy

Energy of a particle as a closed wave structure and the law of conservation of energy

(zenodo.org) Introduction Modern physics considers elementary particles as objects possessing both corpuscular and wave properties. In relativistic mechanics the energy of a particle is defined by the expression: This formula shows that the energy of the particle grows with increasing momentum. However, if the particle is a closed wave structure of an electromagnetic wave and a standing wave in space created by the propagation of the electromagnetic wave, then its energy must be conserved within the system. This leads to an important question: how does a change in velocity affect the internal structure of the wave? De Broglie wavelength and energy redistribution According to de Broglie's hypothesis, a moving particle possesses an associated wave with length: where is Planck's constant, a is momentum. An increase in velocity leads to an increase in momentum, and hence to a reduction in wavelength. This means that when a particle accelerates, its wave structure shrinks, changing the distribution of energy within the system itself. Particle as a closed object If a particle...
Read More
Theory of wave model of matter and fractal structure of the Universe

Theory of wave model of matter and fractal structure of the Universe

(zenodo.org) Correction dated 2025.06.18 Corrected the fractalization formula (recently there was an incorrect entry). Changed the fractalization formula, now it depends not on h, but on ħ (reduced the coefficient 2π, since it is a consequence of geometry, not the processes themselves, which leads to its reduction). This increased the coincidence for the size and mass of the Milky Way when transitioning from neutron parameters. Accordingly, changed the applications and conclusion. Annotation This paper presents a theoretical model describing matter, fundamental interactions and the structure of the Universe on the basis of unified wave principles and the concept of fractality. The paper aims to overcome the fragmentation of modern physical theories by offering an alternative approach to explain the nature of mass, electric charge, gravitation and the origin of fundamental constants. The model is based on the idea that elementary particles are stable standing waves formed in Euclidean space, considered as an energy-rich medium. Interactions between particles and formation of all fundamental forces are interpreted...
Read More